HMPM04AN50SP

500V 半桥智能功率模块

1. 功能描述

HMPM04AN50SP是一款高性价比的MOSFET半桥智能功率模块,内部集成了高性能的驱动芯片和500V的MOFET器件以及自举供电二级管,驱动芯片具备逻辑信号输入处理电路、欠压保护电路、电平位移电路、脉冲滤波电路、输出驱动电路、米勒钳位电路、温度输出功能。专用于无刷电机控制器、电源DC-DC中。

HMPM04AN50SP高侧的工作电压可达500V,低侧 Vcc 的电源电压范围宽10V~20V。驱动输入通道 HIN/LIN 各内建了一个下拉电阻,在输入悬空时使上、下功率MOS 管处于关闭状态。

应用领域 半桥、全桥电路

2. 产品特点

- 集成驱动芯片,耐压可达600V
- 内置自举供电二极管
- 兼容3.3V、5V和15V多种逻辑输入电压
- VCC 和VB 端电源都带欠压保护
- 低端VCC 电压范围10V-20V
- 内建死区控制电路
- · 驱动芯片大于50V/nS的dvdt 耐受能力
- 逻辑可操作的VS直流负压低至-10V
- HIN 输入通道高电平有效,控制高端HO 输出
- LIN 输入通道高电平有效,控制低端LO 输出
- 带迟滞窗口的施密特触发输入
- 驱动芯片自带米勒钳位功能
- 温度检测信号输出,支持多模块直接并联并跟 随最大值输出
- 封装形式: ASOP10

3. 典型应用

申.机.驱动

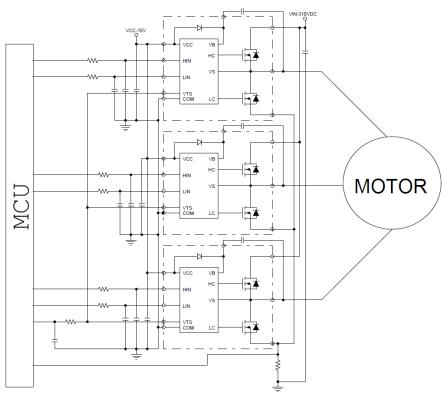


图1典型应用电路

4. 功能框图

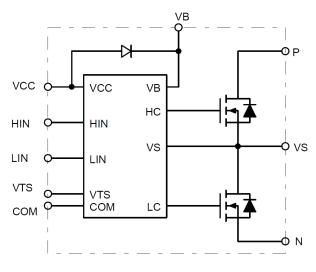


图2 内部功能框图

5. 管脚描述

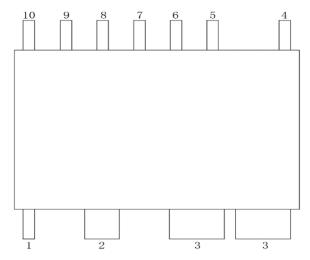


图3 引脚定义

管脚序号	管脚名称	描述
1	N	低侧MOSFET的源极,通过采样电阻或者直接连接到直流输入负端
2	VS	相输出,接负载
3	Р	高侧MOSFET的漏级,直流输入正端
4	VB	高侧驱动及电路的悬浮电源输入
5	GND	芯片低侧驱动和内部逻辑电路工作参考地端
6	VCC	芯片低侧驱动和内部逻辑电路工作电源输入端
7	HIN	逻辑输入信号,高电平有效,控制高侧功率器件的导通与截止
8	LIN	逻辑输入信号,高电平有效,控制低侧功率器件的导通与截至
9	VTS	温度电压信号输出
10	GND	芯片低侧驱动和内部逻辑电路工作参考地端

6. 极限参数

无另外说明,参数都是在环境温度为25℃条件下。

参数名称	符号	测试条件	最小	最大	单位	
高侧悬浮电源	V _B	-	-0.3	520		
高侧悬浮地端	Vs	-	VB-25	500	V	
直流输入电压	VIN	-		500		
MOSFET持续电流	ID	Tj<150°C		4	А	
MOSFET脉冲电流	ID	TC=25°C;puse<100uS		12	A	
控制侧电源电压	VCC	-	-0.3	20		
高侧逻辑信号输入	HIN	-	-0.3	VCC+0.3	V	
低侧逻辑信号输入	LIN	-	-0.3	VCC+0.3		
高侧悬浮地端瞬态	dVs/dt			50	V/ns	
电压变化率	u v s/ut	-	-	50	V/115	
封装耗散功率	PD	T _C = 25°C	-	8.3	W	
结到壳热阻	RthJC	-	-	15	°C/W	
结温	Τ _J	-	-	150		
存储温度	Ts	-	-55	150	${\mathbb C}$	
焊接温度	TL	焊接时间10秒	-	300		

备注:超出所列的极限参数可能导致芯片内部永久失效,在极限的条件下长时间运行会影响芯片的可靠性。 所有电压参数均为参考COM的绝对电压值。热阻和功耗额定值是在板安装和自然对流散热条件下测量的。

7. 推荐的使用条件

参数名称	符号	最小	典型	最大	单位
高侧悬浮电源	V_{B}	VS+10	VS+15	VS+20	
高侧悬浮地端	Vs	-10	310	400	
直流输入电压	VIN		310	400	\/
电源	VCC	12	15	20	V
高侧逻辑信号输入	HIN		0	VCC	
低侧逻辑信号输入	LIN		0	VCC	
死区时间	t _{dead}	1	-	-	uS
工作环境温度	T _A		-40	125	$^{\circ}\mathbb{C}$

8. 电气参数

逆变部分

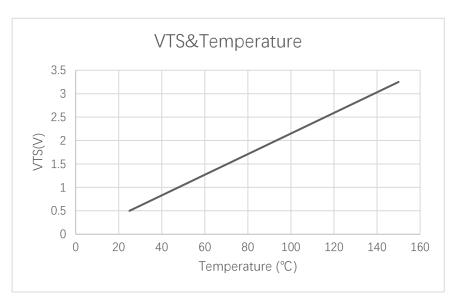
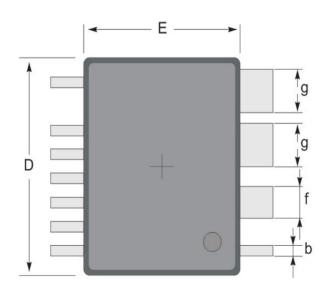
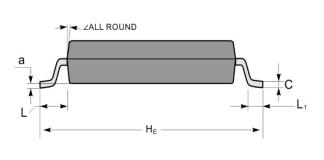
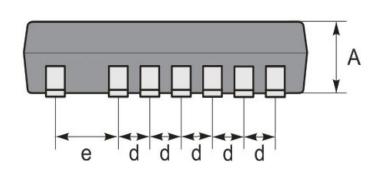
无另外说明,环境温度TA=25℃

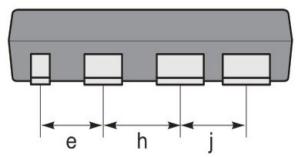
参数名称	符号	测试条件	最小	典型	最大	单位
DS击穿电压	BVDSS	VGS=0V;ID=250uA	500	-	-	V
DS漏电流	IDSS	VGS=0V;VDS=500V	-	-	1	uA
DS导通电阻	RDSON	VGS=10V;ID=1.5A		1.6	2.2	Ω
DS二极管正向压降	VSD	IF = 1.5A	-	1	-	V
反向恢复时间	Trr		-	40	-	ns
反向恢复电量	Qrr	V _{PN} =300V;V _{CC} =15V;	-	0.15	-	nC
	ton	$I_D=1.5A;V_{HIN}/V_{LIN}=0\sim5V$		750		ns
 开关动态参数	toff	L=3mH;		280		ns
八大4D心多数 	Eon			35		uJ
	E _{OFF}			11		uJ

控制部分

无另外说明,参数都是基于电源电压VCC=VBS=15V,环境温度TA=25℃

参数名称	符号	测试条件	最小	典型	最大	单位
输入逻辑信号高电平	VIH	VCC=10V 到20V	3	-	-	V
输入逻辑信号低电平	VIL	VCC=10V 到20V	-	-	8.0	V
高侧高压偏置漏电流	ILK	VB=VS	-	-	100	nA
VCC静态工作电流	IQCC	HIN/LIN/HO/LO悬空	-	110	-	
VBS静态工作电流	IQBS	HIN/LIN/HO/LO悬空	-	33	-	
逻辑输入高电平偏置电流	IIN+	HIN=5V,LIN=0V	-	60	-	uA
逻辑输入低电平偏置电流	IIN-	HIN=0V,LIN=5V	-	60	-	
VCC欠压保护恢复阈值	V _{CCUV+}	•	8	8.9	9.8	
VCC欠压保护阈值	V _{CCUV} -	-	7.1	8	8.9	V
VBS欠压保护恢复阈值	V_{BSUV}	•	8	8.9	9.8	V
VBS欠压保护阈值	V _{BSUV} -	•	7.1	8	8.9	
死区时间	DT	-	-	600	-	ns
温度采样电压输出	VTS	TC=25°C		0.5		V
/皿泛木件电/正制山 	VIS	TC=100°C		2.15		V


图4 VTS随芯片温度变化曲线

9. 封装尺寸

Un	iit	A	С	D	Е	HE	L	L1	a	b	d	e	f	g	h	j	
	max	1. 7	0. 30	10. 1	7. 7	10. 4	1. 5	0.8		0. 45	1. 32	2. 59	1. 25	1. 96	3. 34	2. 35	T.0
mm	typ	1.6	0. 25	9. 9	7. 5	10. 3	1. 4	/	0.2 (ref)	0. 40	1. 27	2. 54	1. 20	1. 91	3. 29	2. 30	
	min	1. 5	0. 20	9. 7	7. 3	10. 2	1. 3	0. 4		0. 35	1. 22	2. 49	1. 15	1. 86	3. 24	2. 25	
	max	67	12	398	303	409	59	31		18	52	102	49	77	131	93	7°
mi1	typ	63	10	390	295	406	55	/	8 (ref)	16	50	100	47	75	130	91	
	min	59	8	382	287	402	51	16		14	48	98	45	73	128	89	